
1

ARDUINO Antenna Rotator

Henry Wyatt VK4BUD

Aim: To design and build an antenna rotator for a small antenna.

Cost: Was minimal, since an Arduino (for the controller part) was already constructed (from another project -

SLA battery tester) that had an LCD display (Appendix 2) and two robust relays connected, as well as an

LM358 op amp (that was previously used to condition readings of analog voltage and current of the

batteries tested).

Additional Parts for Controller:

 Add a 2 pole momentary switch for Clockwise and Anticlockwise direction control.

Add a 5V DC regulator for the supply to the pot located at the rotator.

Add a pot at the rotator, analog values representing antenna direction fed back to the Arduino. A 5kΩ (3

turn) pot was already in the junk box. The pot needed to have 360 degree rotation as the gear on the

main shaft and the gear on the pot would have the same number of teeth. The middle third of the pot

would be used and would not get damaged if swung past the end points (0 to 360 degrees).

Parts Not Required:

Rotators normally have a brake, however the proposed motor had 3000:1 ratio gearbox, so the antenna

could not turn the motor, so no brake required.

Because the Arduino is continuously reading the pot voltage, no limit switches were required at the

extremes of travel, as the Arduino would remove power from the motor at the extremes.

Parts Required for Rotator:

 Everything new was needed for the mechanicals at the Rotator, listed below:

Part Model Number Source

DC Motor (see Appendix 5) 417-9649 RS Components

Metalmate 30x30x1.6 x1m galv steel square tube Bunnings

Metalmate 25x1mm x1m Aluminium round tube Bunnings

6.3mm x1m Aluminium rod Bunnings

Richmond Precision Ball Bearing 25mm x2 Bunnings

Stainless steel Hose Clamp x2 65-89mm Bunnings

P&N Carbon Tap & Drill Set M4 Bunnings

Solid Brass Coupler x2 YG2600 Jaycar

Aluminium Hub x2 YG2784 Jaycar

Switch TGL mini ctr-off DPDT mom PP0512 Jaycar

6mmx50mm D-Shaft 2101-0006-0050 Core Electronics

6mmx30mm D-Shaft 2121-0006-0030 Core Electronics

2

Flexible Clamping Shaft Coupler 4002-0006-0250 Core Electronics

Brass Pinion Gear 6mm D-Bore 2301-0006-0024 Core Electronics

Brass Pinion Gear 6mm Bore 2304-0006-0024 Core Electronics

Controller

The circuit of the controller is in Appendix 1.

Programming of the Arduino was the easy part with the pot attached directly to the box screw terminals for testing

(see Appendix 3). Programming was via the Arduino Integrated Development Environment (IDE). The controller is

stand-alone with Azimuth displayed on the LCD.

Rotator

1. A length of round aluminium tube is the support for the antenna. Force fit onto this are the two ball

bearings. Notches for the bearings are cut into the steel square tube. The bearings are then secured with

the hose clamps.

2. The aluminium hubs (which fit inside the round tube) are then tapped with a 4mm thread.

Holes are drilled in the round tube and the hubs are screwed in with 4mm screws.

A flexible shaft coupler handles any asymmetrical motion.

3. The motor is mounted on a steel plate, with a section of the plate bent to support the pot at a precise

distance from the motor shaft.

4. The gears are assembled on the intermediate shafts.

5. Plumbing pipe will be used to weather-proof the motor assembly.

Display on a separate PC Screen

A compass program was adapted from the Internet. This uses the Processing IDE. The program runs on the PC

and communicates with the Arduino via the USB cable (see Appendix 4). The Graphics png files were as per

original, and one file had my callsign added roughly using Paint.

3

Appendix 1

Controller wiring. One plug pack fed a 12V regulator, a 9V regulator, and a 5V regulator.

A separate plug pack with selectable DC voltages fed the motor to avoid supply surges on the controller.

4

Appendix 2

LCD Module, plugs into a standard Arduino UNO board.

5

Appendix 3
/* Arduino Compass VK4BUD

 *

 Antenna Rotator Controller Program

 written by Henry Wyatt July 2023

 *

 A2: Voltage back from Rotator pot (3 turn 5kΩ)

 D2: CW Relay

 A3: CCW Relay

 ADC voltages for the 5 buttons on analog input pin A0:

 RIGHT: 0.00V : 0 @ 10 bit

 UP: 0.71V : 145 @ 10 bit

 DOWN: 1.61V : 329 @ 10 bit

 LEFT: 2.47V : 505 @ 10 bit

 SELECT: 3.62V : 741 @ 10 bit

 *

*/

 // DECLARATIONS

 #include <LiquidCrystal.h>

 LiquidCrystal lcd(8, 9, 4, 5, 6, 7);

 unsigned long startTime;

 unsigned long elapsedTime;

 unsigned int buttonVoltage;

 float headingDegrees, headingFiltered;

 int voltage;

 float actualvoltage;

 int voltage1;

 boolean CW;

 boolean CCW;

// ADC readings expected for the 5 buttons on the A0 ADC input

#define RIGHT_10BIT_ADC 0 // right

6

#define UP_10BIT_ADC 145 // up

#define DOWN_10BIT_ADC 329 // down

#define LEFT_10BIT_ADC 505 // left

#define SELECT_10BIT_ADC 741 // RESET button

#define BUTTONHYSTERESIS 10 // hysteresis for valid button sensing window

//return values for ReadButtons()

#define BUTTON_NONE 0 //

#define BUTTON_RIGHT 1 //

#define BUTTON_UP 2 //

#define BUTTON_DOWN 3 //

#define BUTTON_LEFT 4 //

#define BUTTON_SELECT 5 // RESET

byte button = BUTTON_NONE; // return no button pressed if the below checks don't write to button

 // SET UP

 void setup()

 {

 pinMode(A0, INPUT); //CW Control

 pinMode(A1, INPUT); //CCW Control

 pinMode(A2, INPUT); //Voltage back from Rotator pot (3 turn 5kΩ)

 pinMode(2, OUTPUT); //CW Relay

 pinMode(A3, OUTPUT); //CCW Relay

 delay(1000);

 digitalWrite(2, LOW); //ensure CW Relay inactive

 digitalWrite(A3, LOW); //ensure CCW Relay inactive

 lcd.begin(16,2);

 Serial.begin(9600);

 while (!Serial) {

 ; // wait for serial port to connect.

 }

 }

7

 // MAIN PROGRAM

 void loop()

 {

 lcd.setCursor(0,0);

 lcd.print("Antenna Azimuth");

 lcd.setCursor(9,1);

 lcd.print("Degrees");

 delay(10);

 voltage = analogRead(A2);

 CW = analogRead(A0);

 CCW = analogRead(A1);

 delay (10);

 //---

 if ((CW == LOW) && (voltage <= 673)) // CW

 {

 do {

 digitalWrite(2, HIGH); // YELLOW LED CW CW POWER to Motor

 delay (10);

 CW = analogRead(A0); // Read again check still pressed

 // Get real voltage

 voltage = analogRead(A2); // actual digital value, 5V to pot

 //voltage1 = map(voltage,337,673,0,1023); // because 3 turn pot, only using 1 turn of 3 turn pot

 voltage1 = map(voltage,337,673,1023,0);

 delay(2);

 //actualvoltage = voltage1*(5.0/1023.0); // voltage 0 to 5V, mapped to middle 1 turn of pot

 //actualvoltage = (actualvoltage-1.65)*3.0; // old calc previous

 // PRINTOUT VALUES TO PROCESSING

8

 delay (10); // Wait 10 mseconds for next reading

 //Calculating Heading

 // headingDegrees = voltage1*(360.0/1023.0); // The heading in Degrees units

 headingDegrees = ((voltage1/1023.0)*360.0);

 // Smoothing the output angle / Low pass filter

 headingFiltered = headingFiltered*0.60 + headingDegrees*0.40;

 lcd.setCursor(0,1);

 lcd.print(" ");

 lcd.setCursor(1,1);

 lcd.print(headingFiltered);

 //Sending the heading value through the Serial Port to Processing IDE

 Serial.println(headingFiltered);

 delay(50);

 }while ((CW == LOW) && (voltage <= 673)); //End of CW control

 }

 digitalWrite(2, LOW); //No more power to motor in CW direction CW Motor Stop

//--

 if ((CCW == LOW) && (voltage >= 337)) // CCW

 {

 do {

 digitalWrite(A3, HIGH); // RED LED CCW CCW POWER to Motor

 delay (10);

 CCW = analogRead(A1); // Read again check still pressed

 // Get real voltage

9

 voltage = analogRead(A2); // actual digital value, 5V to pot

 //voltage1 = map(voltage,337,673,0,1023); // because 3 turn pot, only using 1 turn of 3 turn pot

 voltage1 = map(voltage,337,673,1023,0);

 delay(2);

 //actualvoltage = voltage1*(5.0/1023.0); // voltage 0 to 5V, mapped to middle 1 turn of pot

 //actualvoltage = (actualvoltage-1.65)*3.0; // old calc previous

 // PRINTOUT VALUES TO PROCESSING

 delay (10); // Wait 10 mseconds for next reading

 //Calculating Heading

 // headingDegrees = voltage1*(360.0/1023.0); // The heading in Degrees units

 headingDegrees = ((voltage1/1023.0)*360.0);

 // Smoothing the output angle / Low pass filter

 headingFiltered = headingFiltered*0.60 + headingDegrees*0.40;

 lcd.setCursor(0,1);

 lcd.print(" ");

 lcd.setCursor(1,1);

 lcd.print(headingFiltered);

 //Sending the heading value through the Serial Port to Processing IDE

 Serial.println(headingFiltered);

 delay(50);

 }while ((CCW == LOW) && (voltage >= 337)); //End of CCW control

 }

 digitalWrite(A3, LOW); //No more power to motor in CCW direction CCW Motor Stop

//--

 // Get real voltage

10

 delay(50);

 voltage = analogRead(A2); // actual digital value, 5V to pot

 //voltage1 = map(voltage,337,673,0,1023); // because 3 turn pot, only using 1 turn of 3 turn pot

 voltage1 = map(voltage,337,673,1023,0);

 delay(2);

 //actualvoltage = voltage1*(5.0/1023.0); // voltage 0 to 5V, mapped to middle 1 turn of pot

 //actualvoltage = (actualvoltage-1.65)*3.0; // old calc previous

 // PRINTOUT VALUES TO PROCESSING

 delay (10); // Wait 10 mseconds for next reading

 //Calculating Heading

 // headingDegrees = voltage1*(360.0/1023.0); // The heading in Degrees units

 headingDegrees = ((voltage1/1023.0)*360.0);

 // Smoothing the output angle / Low pass filter

 headingFiltered = headingFiltered*0.60 + headingDegrees*0.40;

 lcd.setCursor(0,1);

 lcd.print(" ");

 lcd.setCursor(1,1);

 lcd.print(headingFiltered);

 //Sending the heading value through the Serial Port to Processing IDE

 Serial.println(headingFiltered);

 delay(50);

 }

11

Appendix 4 (with acknowledgement to original author)

/* Arduino Compass

 *

 * by Dejan Nedelkovski,

 * www.HowToMechatronics.com

 *

 */

import processing.serial.*;

import java.awt.event.KeyEvent;

import java.io.IOException;

Serial myPort;

PImage imgCompass;

PImage imgCompassArrow;

PImage background;

String data="";

float heading;

void setup() {

 size (1920, 1080, P3D);

 smooth();

 imgCompass = loadImage("Compass2.png");

 imgCompassArrow = loadImage("CompassArrow.png");

 background = loadImage("Background.png");

 myPort = new Serial(this, "COM8", 9600); // starts the serial communication

 myPort.bufferUntil('\n');

12

}

void draw() {

 image(background,0, 0); // Loads the Background image

 pushMatrix();

 translate(width/2, height/2, 0); // Translates the coordinate system into the center of the screen, so that the

rotation happen right in the center

 rotateZ(radians(-heading)); // Rotates the Compass around Z - Axis

 image(imgCompass, -960, -540); // Loads the Compass image and as the coordinate system is relocated we

need need to set the image at -960x, -540y (half the screen size)

 popMatrix(); // Brings coordinate system is back to the original position 0,0,0

 image(imgCompassArrow,0, 0); // Loads the CompassArrow image which is not affected by the rotateZ()

function because of the popMatrix() function

 textSize(100);

 text("Heading: " + heading,40,140); // Prints the value of the heading on the screen

 delay(40);

}

// starts reading data from the Serial Port

 void serialEvent (Serial myPort) {

 data = myPort.readStringUntil('\n');// reads the data from the Serial Port and puts it into the String variable

"data".

 //heading = float(data); // Converting the the String value into Float value

 heading = int(data);

}

13

Compass2.png

CompassArrow.png

14

Background.png

15

Appendix 5

16

17

Appendix 6

18

19

 Flexible Shaft Coupler

20

21

